Evaluation of nonlinear filtering for radar data tracking
نویسندگان
چکیده
Radar tracking plays an important role in the area of early warning and detection system, whose precision is closely connected with filtering algorithm. With the development of noise jamming technology in radar echo signal, linear filtering becomes more and more difficult to satisfy the demands of radar tracking, while nonlinear filtering can solve problems such as non-Gaussian noises. There exist a lot of nonlinear filtering algorithms at present, owning their particular characteristics. With this in mind, we provide a comprehensive overview of different nonlinear filtering algorithms in radar tracking, including basic ideas and concrete steps of them. For a more clear presentation, we also make comparisons of them from all sides. Through the analyses of different nonlinear data filters, we find that the unscented Kalman data filter (UKF) can achieve better performance than others. Therefore, we will simulate and show the performance of UKF, and performance of the extended Kalman data filter (EKF) under the same condition will be taken as comparison, whose accuracy was not ideal for radar tracking data filtering.
منابع مشابه
Nonlinear Filtering with IMM Algorithm for Coastal Radar Target Tracking System
This paper presents a performance evaluation of nonlinear filtering with Interacting Multiple Model (IMM) algorithm for implementation on Indonesian coastal radar target tracking system. On this radar, target motion is modeled using Cartesian coordinate but target position measurements are provided in polar coordinate (range and azimuth). For this implementation, we investigated two types of no...
متن کاملAdaptive Fusion of Inertial Navigation System and Tracking Radar Data
Against the range-dependent accuracy of the tracking radar measurements including range, elevation and bearing angles, a new hybrid adaptive Kalman filter is proposed to enhance the performance of the radar aided strapdown inertial navigation system (INS/Radar). This filter involves the concept of residual-based adaptive estimation and adaptive fading Kalman filter and tunes dynamically the fil...
متن کاملDecentralized and Robust Target Tracking with Sensor Networks
In this paper we address the problem of decentralized and robust linear filtering for target tracking using networks of (radar) sensors taking nonlinear range and bearing measurements. The algorithm introduced in this paper permits efficient data fusion from multiple sensors through a summation style fusion architecture. Moreover, we prove that the state estimation error for the linear filterin...
متن کاملObstacle Tracking Results: Cartesian vs. Spherical Particle Filter
This paper focuses on test results from an Airborne Obstacle Tracking system for Unmanned Aerial System (UAS) See and Avoid applications that is based on Particle Filtering algorithm. It performs data fusion of airborne forward looking radar and electro-optical camera by exploiting data gathered during a Sense and Avoid flight experiment at Italian Aerospace Research Centre (CIRA). The develope...
متن کاملMultiple Target Tracking With a 2-D Radar Using the JPDAF Algorithm and Combined Motion Model
Multiple target tracking (MTT) is taken into account as one of the most important topics in tracking targets with radars. In this paper, the MTT problem is used for estimating the position of multiple targets when a 2-D radar is employed to gather measurements. To do so, the Joint Probabilistic Data Association Filter (JPDAF) approach is applied to tracking the position of multiple targets. To ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Wireless Comm. and Networking
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015